NIAOT OpenIR
Systematic Optical Axis Prediction Based on Machine Learning for SONG Pointing Tracking Model
Zhang C(张超); Bai H(白华); Zhang Y(张勇); Cao ZJ(曹兆锦); Cui XQ(崔向群)
2024-08-26
会议名称SPIE Astronomical Telescopes + Instrumentation
会议录名称Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation VI
会议日期2024
会议地点Yokohama, Japan
摘要

The SONG telescope is part of the global SONG program,which includes 1-meter telescopes.It is located at the Lenghu Observatory in Qinghai,China.It is designed to serve two main scientific goals in stellar physics research:the detection of exoplanets by microgravitational lensing methods based on the Lucky Imaging Technique(LIT),and the study of the internal structure of stars using astroseismology methods based on apparent velocity.Telescope pointing accuracy is critical to scientific research,and high-quality data can provide more accurate and reliable results,thus advancing astronomical science.The telescope pointing error is the deviation between the actual pointing of the telescope and the expected pointing during observation.Considering the mechanical structure,driving system,atmosphere effects,sensors, and feedback errors of the telescope,the telescopes are often required to use pointing models to correct these errors.This article proposes a concept verification based on machine learning to reduce the direction error of the SONG Telescope. Using recent historical pointing data,the machine learning algorithm XGBoost is applied to train the model,which can effectively help to improve the precision of telescope pointing,thus enhencing the quality of observational data.At the same time,its results will provide effective information for the operation of the telescope in the future.

关键词SONG telescope machine learning XGBoost pointing tracking
学科领域天文技术与方法
语种英语
文献类型会议论文
条目标识符http://ir.niaot.ac.cn/handle/114a32/2231
专题中国科学院南京天文光学技术研究所知识成果
会议论文
作者单位南京天文光学技术研究所
推荐引用方式
GB/T 7714
Zhang C,Bai H,Zhang Y,et al. Systematic Optical Axis Prediction Based on Machine Learning for SONG Pointing Tracking Model[C],2024.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Systematic Optical A(507KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang C(张超)]的文章
[Bai H(白华)]的文章
[Zhang Y(张勇)]的文章
百度学术
百度学术中相似的文章
[Zhang C(张超)]的文章
[Bai H(白华)]的文章
[Zhang Y(张勇)]的文章
必应学术
必应学术中相似的文章
[Zhang C(张超)]的文章
[Bai H(白华)]的文章
[Zhang Y(张勇)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Systematic Optical Axis Prediction Based on Machine Learning for SONG Pointing Tracking Model.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。