NIAOT OpenIR  > 会议论文
Joint Visual Context for Pedestrian Captioning
Quan Liu1,2,3; Sijiong Zhang1,2,3
2018
会议名称9th International Conference, ICIMCS 2017
会议录名称Internet Multimedia Computing and Service((CCIS, volume 819)
会议日期2017-8-23
会议地点Qingdao, China
出版地Switzerland
出版者Springer
摘要
Image captioning is a fundamental task connecting computer vision and natural language processing. Recent researches usually concentrate on generic image captioning or video captioning among thousands of classes. However, they can not effectively deal with a specific class of objects, such as pedestrian. Pedestrian captioning is critical for analysis, identification and retrieval in massive collections of data.

Therefore, in this paper, we propose a novel approach for pedestrian captioning with joint visual context. Firstly, a deep convolutional neural network (CNN) is employed to obtain the global attributes of a pedestrian (e.g., gender, age, and actions), and a Faster R-CNN is utilized to detect the local parts of interest for identification of the local attributes of a pedestrian (e.g., cloth type, color type, and the belongings).

Then, we splice the global and local attributes into a fixed length vector and input it into a Long-Short Term Memory network (LSTM) to generate descriptions. Finally, a dataset of 5000 pedestrian images is collected to evaluate the performance of pedestrian captioning.

Experimental results show the superiority of the proposed approach.
关键词Image Captioning Pedestrian Description
学科领域天文技术与方法
语种英语
文献类型会议论文
条目标识符http://ir.niaot.ac.cn/handle/114a32/1534
专题会议论文
作者单位1.南京天文光学技术研究所
2.天文光学技术重点实验室
3.中国科学院大学
推荐引用方式
GB/T 7714
Quan Liu,Sijiong Zhang. Joint Visual Context for Pedestrian Captioning[C]. Switzerland:Springer,2018.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Joint Visual Context(815KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Quan Liu]的文章
[Sijiong Zhang]的文章
百度学术
百度学术中相似的文章
[Quan Liu]的文章
[Sijiong Zhang]的文章
必应学术
必应学术中相似的文章
[Quan Liu]的文章
[Sijiong Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Joint Visual Context for Pedestrian captioning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。