

Research and realization of message bus architecture

for LAMOST control system
Lingzhe Xu1,2

1. National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology, Chinese

Academy of Sciences, Nanjing 210042

2. Graduate School of the Chinese Academy of Sciences, Beijing 100049

ABSTRACT

The LAMOST (Large sky Area Multi-Object fibre Spectroscopic Telescope) has now come to its final
completion of R&D stage. Major functions of the telescope have successfully passed a serial site tests
recently, and various kinds of applications integrated into the automation of the telescope chamber is
being under vigorous tests too. The TCS (Telescope Control System) is built on multi-layer distributed
network platform with many sub-systems at different levels. How to efficiently process the enormous
amount of message with particular implications running in and out the TCS is one of the major issues
of the TCS software programming. The paper describes the mechanism and methodology of the
LAMOST message bus structure. The realisation of message bus architecture as a result of years of
research and site test is presented in general, and dealing with the message priority and manipulating
smallest piece of message in parallel or in serial sequence are elaborated in particular.

Keywords: LAMOST, TCS, message bus, communication, link

1. INTRODUCTION

The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST), one of the ongoing
national large scientific and engineering projects, is approaching to its last stage and the final
completion is due to the end of 2008. The telescope will be able to observe 4000 celestial objects
simultaneously, thus become the world’s most powerful ground astronomical optical survey instrument
with 6m aperture[3]. The price of such a unique design philosophy is an extraordinary technical
challenge. Of course, the fulfillment of such a task would put unprecedented challenge to our control

people. Figure 1 shows the TCS（Telescope Control System） with its major function modules below

and OCS (Observatory Control System) on its top. The OCS is at the top in the hierarchy responsible
for supporting the on-site observer and system operator in their tasks and coordinates the activities of

Advanced Software and Control for Astronomy II, edited by Alan Bridger, Nicole M. Radziwill
Proc. of SPIE Vol. 7019, 701922, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.787059

Proc. of SPIE Vol. 7019 701922-1

oc

1c

V
X

IIJ
Jf

lH
J

J)
LI

A
G

V
IL

U
fl

U
G

J)

L
IA

G

C
C
C

C
C
C

IT
)

I
II{

nT
I\I

cT
)

I

IIO
IJ

JG

(O
U

LL
O

j

CC

n.
qi

u

Ic

the other three principal systems immediately at one level below the OCS in the hierarchy, namely TCS,
Instrument Control System (ICS) and Data Handling System (DHS).

TCS is the centre of network control. A great amount of its routine work is involved in messages
communication. Most messages are coming from OCS and the TCS’s 8 subsystems. Message bus
architecture has been taken to manage the communication. The main function of message bus
architecture is outlined below [1].

1. Receive command messages from OCS
2. Decompose messages into atom messages
3. Send atom messages by priorities in parallel or in serial sequence
4. Receive status messages from subsystems
5. Send status messages to OCS
6. M&C (Monitor and Control) message life time

 Figure 1: LAMOST high-level control and interfaces

2. Outline of message bus architecture

2.1 Modules of message bus architecture

Nowadays most telescopes’ OCSs are built on Linux OS, one of favorite OSs for astronomers
worldwide, and so is the LAMOST’s OCS. The choice of Linux as OCS platform is because Linux
features powerful tools for astronomical data processing and it is free. [4]. TCSs on the other hand
usually need real time platforms for time critical applications. Particularly in the case of LAMOST for

Proc. of SPIE Vol. 7019 701922-2

manipulating the messages from OCS and 8 subsystems QNX OS has been chosen as the corner stone
in network real time application. The QNX is cost effective, a well known distributed real time OS. In
addition, with QNX's FLEET networking protocol it is possible to form a switching platform by scaling
to as many subsystems (nodes) as are required in a software-transparent manner [2]. It also provides
multitasking, priority-driven preemptive scheduling and fast context switching, all are essential
ingredients of a real time system. Socket communication technique with TCP/IP protocol is adopted
between the LAMOST’s TCS and OCS on Ethernet network. Socket communication, database based
ODBC communication and Rs232 communication are adopted between TCS and subsystems because
of various kinds of subsystem hardwires [5]. So, the message bus architecture is divided into 3 parts,
message bus control module, command message bus module and status message bus module. Message
bus control module is in charge of sending command to subsystems and receiving command from
command message bus module. Command message bus module is in charge of receiving command
from OCS and decomposing the command into atom messages. Status message bus module is in charge
of receiving status from subsystems and sending the message to message bus control module. Message
bus control module is the headquarters of message bus architecture, which decides the transmission of
messages. By this way, the message bus control module is independent of the change of OCS or
subsystems.

2.2 Message process flow

A typical message process flow is shown in figure 2, which is elaborated in following steps.

1. OCS sends a command message

2. Command message bus module receives the message and decomposes it into atom messages

3. Command message bus sends the atom message to the message bus control module

4. Message bus control module puts the atom messages into message bus by its priority in
parallel or serial sequence

5. Message bus control module sends the current message to TCS and saves it in database

6. TCS sends the message to subsystems through command generator

7. Status message bus module receives a status message from subsystems

8. Status message bus module analyses the status message

9. Status message bus module sends the disposal message to message bus control module

10. Message bus control module updates message bus

11. Message bus control module sends the status message to TCS and save it in database

12. TCS sends the status message to OCS through status generator

Proc. of SPIE Vol. 7019 701922-3

qj pr12COJJLO1
uJoqrij

riq
2

Lcommrnq
GJJGLEf1OI

TJJ2
prT

uJoqrij
COJJLO1 qj

Figure 2: Message process flow in message bus architecture

3. Design Highlights of message bus architecture

3.1 Message components

A command which OCS sends to command message bus module is either atom message or
combined message. Command message bus module decomposes the combined message into atom
messages by querying the database. There is a “message bus table” in database which defines the
relation between every combined message and atom messages. In addition the “message bus table”
also defines priority and sequence, either parallel or serial, for all the atom messages. Again the
priority and sequence for all atom messages are defined according to their real time application in
the telescope observation flow of celestial objects. The “message bus table” consists of two items,
“item id” and “message”. The “item id” defines the priority of message. The lower the value is the
higher the priority is. The higher priority message must be processed before the lower priority
message except for the “item id” equals 1, meaning the message is a global, which must be sent
immediately despite of its priority. The item “message” defines the commands of all the messages
and their maximal life time. The maximal life time indicates the deadline of the command to be done.

With same “item id” the corresponding commands could be different. The priority can be changed

based on the real time application without changing the program. Table 1 is a simplified sample of
the “message bus table”.

item id message

1 refrigeration，environment monitor

Proc. of SPIE Vol. 7019 701922-4

2 ventilation

3 Self check

4 mount ready

5 open dome

6 open focus door

7 open focus

8 MB focus

9 close focus

10 track

11 SH track

12 close focus door

13 close dome

Table 1: Simplified “message bus table”

3.2 Data structure in message bus

Message bus is designed as a chain bintree. Every chain is an atom message. The TCS working team
describes the structure of the chain bintree by C program.

Struct st_message

{

int i_degree; //priority

char message[512]; //the atom message

Struct st_message *pst_child ;//the child chain

Struct st_message *pst_brother; //the brother chain

int i_flag; //flag

int i_time; //the maximal lifetime

char s_time ;//begin time

}

 The character of the data structure is described below:

1. the root chain is the ancestor of all other chain

2. the chain is the child chain of the current chain when it is pointed by the current chain’s

Proc. of SPIE Vol. 7019 701922-5

I

LOOT0

J/\jGJ

child chain

3. the current chain is the father chain of its child chain

4. the chain is the right brother chain of the current chain when it is pointed by the current
chain’s brother chain

5. the current chain is the left chain of its left brother chain

6. all the chain is the direct offspring of root chain when it can be visited through root chain’s
child chain

7. if there is no right brother chain or child chain then the current chain points to empty

Figure 3.Data structure in message bus

For example, figure 3 shows the data structure of the message bus. The root chain points to the
8_1 chain. 8_1 chain is the lowest priority chain in message bus. The 3_1 chain is the highest
priority chain in message bus. The 3_2 chain is the right brother of 3_1 chain. They have the
same priority. The 3_1 chain is the child chain of 5_1 chain. The 5_1 chain is the father chain
of 3_1 chain. The 3_1 chain and 3_2 chain are the current chains; they must be done before the
5_1 chain.

3.3 Function and variable design

 e: e is the chain of the message bus

 e1: e1 is the chain of the message bus

 root: root is the root chain of the message bus

 Visit(e) : visit the chain e of the message bus

Proc. of SPIE Vol. 7019 701922-6

Child(e): get the chain e’s child chain. If the chain e has no child chain then return empty

Brother(e):get the chain e’s right brother chain. If the chain e has no right brother chain then
return empty

 Delete(e): delete the chain e from message bus

3.4 Process for receiving messages

The algorithm for inserting a new message into message bus is programmed below. When a new
message is sent to message bus, it is set to “unsent”.

 e_new: is the chain to be inserted into message bus

 e1 = root;

 while(Visit(Child(e1))!=empty)

{

 if(e_new->i_degree > Child(e1)->i_degree)

 {

 e_new->pst_child = Child(e1);

 e_new->pst_brother= NULL;

 e1->pst_child = e_new;

 return;

 }

 if(e_new->i_degree == Child(e1)->i_degree)

 {

 e1 = Child(e1);

 while(Visit(Brother(e1)!=empty) e1=Brother(e1);

 e_new->pst_child = NULL;

 e_new->pst_brother= NULL;

 e1-> pst_brother = e_new;

 return;

 }

 e1 = Child(e1);

 if(Visit(Child(e1))=empty)

{

Proc. of SPIE Vol. 7019 701922-7

U+

m61

I

LOO

IU6I4 m6IG

 e_new->pst_child =NULL;

 e_new->pst_brother= NULL;

 e1->pst_child = e_new;

 return;

}

}

e_new->pst_child =NULL;

 e_new->pst_brother= NULL;

 e1->pst_child = e_new;

 return;

3.5 Process for sending messages

The message which is set to “unsent” and it is at lowest level of message bus will be sent to TCS,
and it will be set to “sent”. Depending on the level of message priority the implement of inserting a
message is shown below in 3 different ways, figure 4 to figure 6.

Figure 4.The priority of message to be inserted is higher than the current message’s

Proc. of SPIE Vol. 7019 701922-8

U 3I
WG1 jUG

LOOT

'4
WGt1G

±

U

mGI

I

GJ

LOOT

IU6Ll
mGI

 Figure 5.The priority of message to be inserted is equal with current message’s

Figure 6.The priority of message to be inserted is less than current message’s

3.6 Process for deleting messages

When a message expires, it should be deleted from message bus. The programming for deleting
message from message bus is shown below, from figure 7 to figure 9.

e_delete: is the chain to be deleted from message bus

e1 = root;

 while(Visit(Child(Child(e1)))!=empty)

{

Proc. of SPIE Vol. 7019 701922-9

 e1 = Child(e1);

}

If(Child(e1)==e_delete)

{

e1-> pst_child = Child(e1)->pst_brother;

Delete(Child(e1));

return;

}

e1 = Child(e1);

while(Visit(Brother(e1))!=empty)

{

if(Brother(e1) == e_delete)

{

 e1-> pst_brother = e1-> pst_brother->pst_brother;

Delete(e_delete);

return;

}

if(Brother(Brother(e1))=empty)

{

 e1->pst_brother = NULL;

Delete(e_delete);

return;

}

e1 = Brother(e1);

}

Proc. of SPIE Vol. 7019 701922-10

UI

L.oo

U

±

C
I

LOO

H3
UJGWUJGW

LOOT

qGjG.

 Figure 7.The method 1 of delete message

 Figure 8.The method 2 of delete message

 Figure 9.The method 3 of delete message

Proc. of SPIE Vol. 7019 701922-11

4. The conclusion
The realization of message bus architecture for the control system of LAMOST telescope is
elaborated above. The mechanism and technique tips involved in the message structure, message
manipulation and its programming are all illustrated in detail. The research work has passed a
critical review and evaluation, and undergone a vigorous on site test. Such an approach for message
process in LAMOST’s high level software programming has been proved practical, effective and
robust. Above all the advantage of such a strategy makes it possible that TCS application is
independent of the sequence order in which the telescope is under operation for getting ready to
observe a celestial object. The reason is quite obvious because the user is able to update the database
to adjust the message’s attributes so that to modify the observation preparation steps.

REFERENCES

1. Xinqi Xu, “Control system and technical requirements - preliminary design”, LAMOST Internal

Technical Report, 1998.
2. Xinqi Xu, “Study of QNX real time operation system and exploration on its application in large

astronomical telescopes”, ASTRONOMICAL INSTRUMENT AND TECHNOLOGY, 1999.

3. Shou-guan Wang, Ding-qiang Su, Yao-quan Chu, Xiangqun Cui, and Ya-nan Wang, “Special

configuration of a very large Schmidt telescope for extensive astronomical spectroscopic

observation”, Appl. Opt. 35, pp. 5155-5161, 1996.

4. Xinqi Xu, Lingzhe Xu, Gangping Jin, “Overview of LAMOST control system”, SPIE Volume
4837, 2002.

5. Lingzhe Xu, Xinqi Xu, “Application of real time database to LAMOST Control System”, SPIE
Volume 5496, 2004.

Proc. of SPIE Vol. 7019 701922-12

	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close

