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ABSTRACT

An iterative deconvolution algorithm is presented in detail which utilizes regularization to combine 
maximum-likelihood (ML) estimate of convolution error and several physical constraints to build error 
function.  The physical constraints used in this algorithm include positivity, band-limit information and the 
information of multiple frames. By minimizing the combined error metric of individual ones, the object can 
be expected to be recovered from the noisy data. In addition, numerical simulation of Phase Screen distorted 
by atmospheric turbulence following the Kolmogorov spectrum is also made to generate the PSFs which are 
used to simulate the degraded images. 
Keywords: adaptive optics, iterative deconvolution, maximum-likelihood, physical constraints 

1. INTRODUCTION

Besides the inherent defects of the instrument’s optics, ground-based images are severely distorted due to the 
atmospheric turbulence. Without correction, the angular spatial resolution is limited to the ratio wavelength over fried’s 
parameter. In many past years, various techniques have been proposed to overcome this limitation and efficiently reach 
the diffraction limit of the telescopes. Adaptive optics (AO) is now a proven powerful technology for real-time 
compensation of space objects, to reduce the degrading effects of the Earth’s atmosphere. However, the compensation is 
never “perfect” and residual wave-front errors remain, which in some cases can lead to significant uncompensated power. 
This decreases the image contrast making, in some cases, necessary to use some form of image post-processing to 
remove these effects. In this paper, we use regularization to combine maximum-likelihood (ML) estimate1 and physical 
constraint2, 3, 4, 5, 6. As previously mentioned, the algorithm can be expected to recover the object. 

2. THE DECONVOLUTION PROBLEM 

The linear imaging equation can be written as 

or in the Fourier domain as 

where  is the measurement,  is the object,  is the PSF of system,  represents noise contamination 
and  denotes convolution. The Fourier transforms are indicated by the corresponding uppercase notation, where  and 

 are the spatial index and the spatial frequency index respectively.  
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The inverse problem to determine f is usually an ill-posed problem in practice. This means that there is no unique and 
stable solution. But, we can introduce regularization in order to find a unique and stable solution. 

3.  DECONVOLUTION BY MAXIMUM-LIKELIHOOD (ML) ESTIMATE OF CONVOLUTION 
ERROR AND SOME PHYSICAL CONSTRAINTS 

3.1 ML estimate of convolution Error 
The convolution error measures the consistency between the measurements and the estimates, and is defined as 

where k is the frame index the ^ indicates the current estimates of the variables, and  denotes Frobenius norm. 
On the other hand, by M-L theory and Tikhonov regularization theory, (3) is equivalent to 

where  is the regular factor. (4) can be transformed as 

Setting derivate of J respective with  equal to zeros, we can get 

Thus,

Here, using (7) to represent convolution error. So, 

3.2 Positive 
Due to physical constraints to both the object and PSF, both are positive and are parameterized as square quantities 
for convenience of programming and error metric minimization, i.e. 

3.3 Band-Limit Error 
The PSF band-limit error is defined as 
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where  is a appropriate cut-off frequency. This constraint can force high-spatial 

frequency noise into the PSF estimates. 
3.4 Prior PSF Information 

Prior PSF information can be used to reduce the PSF parameter space, to better prevent local minimum, and also 
break the symmetry. We use the form of a mean PSF for multiple PSFs6 to do this. The mean PSF, denoted by 
(this means the shift-and-add (SAA) or peak-stacked mean of the PSFs), can remove the effects of mis-registration 
from one frame to another. The SAA of the PSF estimates is 

where  is the intensity peak location of the  frame, and K is the number of frame. Then, the SAA image is 
compared to the SAA image of a reference star (denoted by ,  is the prior PSF information and 
known.) by using the following error-metric, 

The algorithm minimizes on the combined error metrics described above, with weights, i.e. 

where ,  and  are weights. 

4. ERROR METRIC MINIMIZATION 

The proposed algorithm follows a conjugate gradient technique7, 8 for error metric minimization. To apply conjugate 
gradient minimization efficiently, it is necessary to calculate the derivatives of error metric. 
Next, we demonstrate the derivatives of errors 2. Assume that 

The partial derivatives of L can be taken as  
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5.1 The numerical simulation of single-star restoration 

Simulations are applied to single-star degraded images in which Gaussian noise with three cases (0 means and 0, 

0.001, 0.01 standard deviations) is added. In our simulations the effectivity of constraint represented by formulation 

(12) are not marked, so the numerical simulations don’t use it. The simulations use two basic formulations 

presented here. 

where  and  are weights. And, 

5.1.1 Simulation 1 (for noisy-free images) 
The initial inputs of simulation are 8 degraded images and 2 initial estimates of PSF showed in Fig.3. The outputs 
of simulation are the optimal estimates of ideal single-star image. Finally, these estimates are fitted by Gaussian 
functions. Fig.4 and Fig.5 show these results. Initial parameters and performance of algorithm are shown in Table 1. 
The central position and FWHM (full width at half maximum) of star by fitting optimal estimate of ideal single-star 
image are shown in Table 2. From Table 2 the star in results image is sharper than one in degraded image, and we 
can even get diffraction-limited image. 

Fig.3: Left to right, degraded image (here only one frame), ideal PSF and single-star image used as initial estimates of PSF 

Fig.4: Left to right, for ideal PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four images 

are the Gaussian-fitting results for the first four images, respectively. 

Fig.5: Left to right, for single-star PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four 

images are the Gaussian-fitting results for the first four images, respectively. 
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Table1: The parameters and performance of algorithm. 

PSF frame E iteration Time 
(second) 

ideal 2 500000 1.0 0.005 -2.18343e+010 5 27.169 
4 500000 1.0 0.005 -4.40983e+010 4 40.718 
6 500000 1.0 0.005 -6.61401e+010 3 49.982 
8 500000 1.0 0.005 -8.87499e+010 3 78.362 

Single-star 2 1e+006 1.0 0.001 -2.18895e+010 6 31.676 
4 1e+006 1.0 0.001 -4.4181e+010 7 61.138 
6 1e+006 1.0 0.001 -6.62492e+010 7 100.084 
8 1e+006 1.0 0.001 -8.88867e+010 7 147.311 

Table2: Gaussian-fitting results 

 Central position (pixel) FWHM (pixel) 
Ideal image (17.0000,17.0000) 4.7079 

Diffraction-limited image (17.0018, 16.9913) 5.3253 
Degraded image (17.0108, 16.9877) 8.7855 

Ideal PSFs 2 frame (16.9375, 17.0682) 5.5125 
4 frame (16.9404, 17.0467) 5.2121 
6 frame (16.9602, 17.0298) 5.0601 
8 frame (16.9693, 17.0403) 5.0263 

Single-star PSFs 
2 frame (16.9403, 17.0650) 5.7231 
4 frame (16.9378, 17.0369) 5.4825 
6 frame (16.9640, 17.0197) 5.2891 
8 frame (16.9740, 17.0300) 5.1864 

5.1.2 Simulation 2 (Gaussian noise ) 
Simulation 2 has two processes (represented by P1 and P2) that are all same as simulation 1. P1 is used for the 
degraded images in which Gaussian noise with zero mean and 0.001 standard deviation is added. Initial inputs of P1 
is shown in Fig.6 consisted of the degraded image , the ideal PSF and the single-star image that is used as initial 
estimates of PSFs and that is added in by Gaussian noise with zero mean and 0.001 standard deviation. Fig.7 and 
Fig.8 show the results of restoration and Gaussian fitting for this case. The central position and FWHM gotten by 
fitting optimal estimates of ideal single-star image are shown in Table 3. 
P2 is used for the degraded images in which Gaussian noise with zero mean and 0.01 standard deviation is added. 
Initial inputs of P2 is shown in Fig.9 consisted of the degraded image , the ideal PSF and the single-star image that 
is used as initial estimates of PSFs and that is added in by Gaussian noise with zero mean and 0.01 standard 
deviation. Fig.10 and Fig.11 show the results of restoration and Gaussian fitting for this case. The central position 
and FWHM gotten by fitting optimal estimates of ideal single-star image are shown in Table 4.  
From Table 3 and Table 4 choosing better initial estimates of PFS, the algorithm can improve the sharpness of star. 
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Table 3: Gaussian-fitting results 

Central position (pixel) FWHM (pixel) 

Ideal image (17.0000,17.0000) 4.7079 

Diffraction-limited image (17.0018, 16.9913) 5.3253 

Degraded image (16.9784, 16.9570) 8.7863 

Ideal PSFs 2 frame (16.9667, 17.1096c 5.4137 

4 frame (17.0201, 17.0695) 5.3960 

6 frame (17.0613, 17.0632) 5.2421 

8 frame (17.0888, 17.0563) 5.1682 

Single-star PSFs  2 frame (16.8761, 17.0009) 6.5708 

4 frame (16.7734, 16.9075) 6.6266 

6 frame (16.8677, 16.9406) 7.2022 

8 frame (16.7596, 16.8984) 6.8531 

Table 4: Gaussian-fitting results 

 Central position (pixel) FWHM (pixel) 
Ideal image (17.0000,17.0000) 4.7079 

Diffraction-limited image (17.0018, 16.9913) 5.3253 
Degraded image (16.9339, 17.0117) 8.2798 

Ideal PSFs 2 frame (16.9511, 16.9859) 8.6320 
4 frame (16.9330, 16.9680) 7.9697 
6 frame (16.9298, 17.0046) 7.6176 
8 frame (16.9429, 17.0024) 7.3877 

Single-star PSFs  2 frame (16.9476, 16.8558) 8.3581 
4 frame (16.9196, 16.8167) 7.8574 
6 frame (16.9274, 16.8577) 8.0128 
8 frame (16.9934, 16.8640) 9.9721 

5.1.3 Conclusion 
1) Using better initial estimates of PSFs, the algorithm can better restore the position of single star and 

maintain the shape of single star. 
2) The Gaussian fitting can better correct the distortion of star shape and can suppress some noise. 
3) When the Gaussian noise is bigger, the algorithm can’t effectively restore the single star. For example, in 

the case that the Gaussian noise with zero mean and 0.1 standard deviation is added to the degraded 
images, the noise almost submerges stars and the numerical simulation also show that the stars can’t be 
restored. 
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5.2 The numerical simulation of binary-star restoration 
Simulations are applied to binary-star degraded images in which Gaussian noise with two cases (0 means and 0, 
0.01 standard deviations) is added. The simulations use the model formulations (19) and (20). 

5.2.1 Simulation 1 (for noisy-free images) 
The initial inputs of simulation are 8 degraded images and 3 initial estimates of PSF showed in Fig.12. The outputs 
of simulation are the optimal estimates of ideal binary-star image. Finally, these estimates are fitted by 2 2-D 
Gaussian functions. Fig.13, Fig.14 and Fig.15 show these results. The central position and FWHM gotten by fitting 
initial estimates of PSFs and fitting optimal estimates of ideal binary-star image are shown in Table 5 and Table 6 
respectively. From Table 6 the algorithm can improve the resolution and contrast of binary star. 

Fig.12: Left to right, the degraded image (here only one frame), the ideal PSF and the single-star-1 and single-star-2 images 

used as initial estimates of PSFs 

Fig.13: Left to right, for ideal PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four images

are the Gaussian-fitting results for the first four images, respectively. 

Fig.14: Left to right, for single-star-1 PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four

images are the Gaussian-fitting results for the first four images, respectively. 

Fig.15: Left to right, for single-star-2 PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four

images are the Gaussian-fitting results for the first four images, respectively. 
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Fig.17: Left to right, for ideal PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four images

are the Gaussian-fitting results for the first four images, respectively. 

Fig.18: Left to right, for single-star PSFs inputs the first four images are the restorations for 2, 4, 6 and 8 frames. The last four

images are the Gaussian-fitting results for the first four images, respectively. 

Table 7: Gaussian-fitting results 

 Central position 1 
(pixel) 

FWHM 
1

(pixel)

Central position 2 
(pixel) 

FWHM 
2

(pixel) 

Relative 
distance
(pixel)

Binary-star image (14.0005, 14.0004) 7.0647 (21.0012, 22.0007) 3.5334 10.63

Diffraction-limited 
image 

(14.0027, 14.0069) 7.6091 (20.9898, 21.9937) 4.2268 10.61

Degraded image (14.0171, 14.0385) 10.4625 (21.1213, 22.0533) 8.1519 10.71

Ideal PSFs 2  frame (13.9092, 13.9591) 7.7495 (21.0582, 21.8765) 6.0084 10.67

4  frame (13.9303, 13.9129) 7.4512 (21.0258, 21.8977) 5.5880 10.67

6  frame (13.9707, 13.9031) 7.2438 (21.0142, 21.9345) 5.2615 10.68

8  frame (13.9842, 13.9098) 7.1772 (21.0004, 21.9348) 4.9432 10.66

Single-star 
PSFs  

2  frame (13.8783, 13.9507) 8.5929 (21.0244, 22.0120) 6.8935 10.77

4  frame (13.8992, 13.8763) 8.5284 (20.8441, 22.0201) 6.7490 10.70

6  frame (13.9180, 13.8798) 8.6452 (20.8668, 22.0205) 6.8314 10.70

8  frame (13.9303, 13.8807) 8.6093 (20.8668, 22.0567) 6.7134 10.72

5.2.3 Conclusion 
1) Using better initial estimates of PSFs, the algorithm can keep the relative distance of binary stars and the 

bigger star. When the initial estimates of PSFs are not ideal, the algorithm effect declines. 
2) The Gaussian fitting can better correct the distortion of star shape. 
3) When the Gaussian noise is bigger, the algorithm can’t effectively restore the binary star. 

6. SUMMARY 

The variability and the lack of a precise frame-by-frame PSF determination make post-processing of the data difficult. 
The multi-frame iterative deconvolution method described takes successfully advantage of this variability. Numerical 
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simulation of Phase Screen distorted by atmospheric turbulence following the Kolmogorov spectrum by using Fourier 
Transform is made in this paper to generate the PSFs which are used to simulate the degraded images through 
atmospheric turbulence. The multi-frame iterative deconvolution is used to process these images. It can reduce the 
turbulent effect and improves the resolution and contrast of stars.
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