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ABSTRACT 
The workshop test of mount drive for Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) was 
completed in June of 2005. Now the giant mount has just been erected on Xinglong station, and is due to test in the 
summer of 2006. LAMOST mount mechanism features friction drive on both axes, and oil pad is employed specifically 
for the azimuth. For further improving the tracking accuracy in worse surroundings some nonlinear phenomena in the 
drive chain have to be addressed. Moreover, external uncertainties on Xinglong site, wind buffeting in particular, could 
affect load variation on the drive. The control system parameters would change with time, thus eventually degrade the 
tracking performance. All these reasonable assumptions call for a more robust controller than conventional PID approach 
to cope with. This is where H-Infinity controller comes in. This paper focuses on the mount drive of LAMOST by using 
H-Infinity technique and comparison with the PID servo. The load disturbance rejection is discussed, as well as 
transmission rigidity improvement is analyzed. Study and simulation are done in Matlab. The model test in our friction 
drive lab is presented. 
Keywords: H-Infinity, PID, control system, LAMOST 

1．INTRODUCTION 

Friction drive is frequently utilised in main axes drive system of contemporary astronomical telescopes, and the 
LAMOST telescope is no exceptional. Main advantage of friction drive is in the positioning accuracy, which is not 
affected by backlash like conventional gear drive systems. Friction drive is a kind of novel drive settings, which demands 
for better performance of control to achieve high precision angular position. However, since the friction torque between 
the azimuth axis and axletree is nonlinear to some extend, the contact between the driving wheel and passive wheel 
cannot be idealized, and there’s not an extremely glabrous contact surface along with non-zero radical flop, and no 
immense transmission rigidity that all together make an alterable disturbance torque and hence affect the tracking 
precision. Among these factors, friction undoubtedly is the dominating one. Paper [1] refers to a kind of robust nonlinear 
friction compensation method to restrain oscillating of stable limit cycles. Using mathematic model to analyse friction 
phenomena, paper [2] proposes the back-stepping sliding mode controller to improve tracking performance in the sliding 
and pre-sliding phase. It is inevitable to establish mathematical model of friction torque when using friction 
compensation based on friction model, and to introduce model output acting as compensation signal to counteract 
friction torque. But in practice, it is very difficult to form precise mathematical model. And if the model is imprecise, the 
compensation torque will be hard to avoid over responding or insufficient. Paper [3] mentions a kind of robust nonlinear 
control based on Lyapunov direct method, through introducing robust compensation to counteract the friction moment, 
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meanwhile, adopting nonlinear gain to conquer parameter uncertainty. Upper bound replacing precise math model makes 
this method a feasible approach. In this paper, we first give a brief statement of friction, and the nonlinear wind 
disturbance will be analysed. Second, we will present the on line friction compensation with PID controller. At last, a 

robust H∞  control method by taking nonlinear disturbances as model oscillations will be presented in detail.            

2. FRICTION MODEL 
The friction mechanism applied in main axes structure of astronomical telescopes can generally be simplified as a pair of 
wheels contacted along a common cylinder generatrix. One wheel in the pair is driving wheel and the other driven wheel 
with radially applied force to make a close contact between the two wheels. The friction in the contact area between the 
driving wheel and the driven wheel features complex motions such as pre-sliding displacement, break-away, and 
stick-slip etc, thus making friction an important aspect in high quality servo systems. Model-based friction compensation 
schemes resort to a suitable friction model to predict the friction without adopting high gain control loops. The 
representative LuGre friction model has been applied to many friction compensation control systems. It is derived from 
the bristle model assuming that the friction interface is thought as a contact between bristles. The friction force can be 
represented with nonlinear internal friction dynamics as follows [4,5]: 
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where z  and θ  are the internal states of friction model and the position of the system respectively, 0σ  and 1σ  are 

terms of the bristle model, 2σ  is vicious friction coefficient respectively, CF  and SF  represent Coulomb friction and 

static friction respectively, Sθ&  denotes Streibeck velocity, and ( )g θ&  describes the Streibeck behaviour. Figure 1 shows 

the friction torque against the corresponding velocity by simulation in Matlab. 
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Figure 2 shows LAMOST block diagram of drive transfer functions, where daV  and aV  denote input and control 

voltage respectively, K is voltage magnifying coefficient, gR represents output resistance of amplifier, 1aR and 2aR  

are armature resistances of motor 1 and motor 2 respectively, aI is armature current of motor, 1tK and 2tK  denote 
torque coefficients of motor 1 and 2 respectively, uM is motor torque, bM  represents load torque, J is moment of 

inertia that is converted to motor axis, mθ& is motor angular velocity, θ& denotes the driven wheel’s angular velocity, N is 

the ratio between motor and the driven wheel, eV  represents the measured feedback velocity, F  is viscous coefficient, 

1eK and 2eK  denote the two motors’ counter electromotive force coefficient respectively, tgK  is tachometer transfer 

coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 From figure 2, the states could be formed as follows:  
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Formula (4) describes the plant (P) under control. Due to the load torque cannot be measured directly, it needs to 
differentiate and analyse the model to get an approximation. 
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Fig.3 Block diagram of feedforward friction compensation 
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From figure 3, we get: 

1( ) ( ) ( ) ( )b uM s M s P s sθ−= −  

By replacing measured control signal uM  and putting system output mθ  into above formula, it is easy to get the 

estimated value of ˆ
bM . Feedforward compensation design scheme consists in finding controller dG  that counteracts 

friction torque bM  based on the estimated ˆ
bM . In figure 3, C  is the feedback controller transfer function, P  

denotes the plant just formulated by formula (4). From the block diagram: 

ˆ( ) ( ) ( ) ( )da m d bE s V s s G s Mθ= − −                                     (5) 

( ) ( )[ ( ) ( ) ( )]m bs P s C s E s M sθ = −                                      (6) 

The system transfer function then could be described by: 
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Once the feedforward transfer function dG  is determined by 1C−  and assuming that ˆ
bM  almost equals to bM , the 

affect of friction load torque could be approximately compensated. 
Another compensation approach is applying aforementioned friction model. Assuming that the parameters 0σ , 1σ  and 

2σ , and the function g  in the friction model are known. Since the state z  is not measurable, it is necessary to design 

an observer for estimating the friction force. The nonlinear friction observer can be described by: 
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where da me V θ= −  is the position error and daV  is the desired reference which is assumed to be twice differentiable. 
ke  is a correction term from the position error in the observer. The position errors of PID controller with tracking speed 
1arcsec/s based on LuGre friction model are shown in figure 4 and 5. 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Position error curve of Azimuth (1arcsec/s) 

seconds 

ar
cs

ec
 

Fig.5 Position error curve of Altitude (1arcsec/s) 
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4. WIND DISTURBANCE 

The Alt-Az mount of LAMOST carries the reflecting Schmidt plate which consists 24 pieces of hexagonal sub-mirrors 
with the diameter about 5m as a whole. Especially the mount is erected on Xinglong mountain. So wind will be the 
uppermost factor of disturbances which affect the performance of the mount movement. To reject wind disturbance, it 
needs first to found a wind model which could predict the disturbance. A common used wind model is Davenport 
spectral density model which separates the torque of wind disturbance into two parts [6]: one is the DC part of the wind 
which brings a constant torque, the other is a time-varying part. The DC part can be described by 

const TT C qAD=                                              (10) 

where  

TC  is wind torque coefficient, 21 2q vρ=  denotes the dynamic pressure, ρ  is density of air, v  denotes wind 

velocity, A  represents the contact area and D  is the radius of the axis which vertical to A . The time-varying part 
could be formed as follows: 
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where 2[0.4 ln( )]r
o

o

zK
z

= , oz  denotes surface roughness length of local terrain, rz  is reference height, f  represents 

frequency and aK  is terrain roughness constant. 

 

5. H∞ CONTROL  

Almost all control systems in practical engineering consist uncertain character for a variety of reasons. This uncertain 
character generally could be divided into two parts: one is outer uncertainty such as disturbance etc; the other is called 
inner uncertainty like measure of error, un-modelling dynamics of the control object and so on. So it is difficult to 
describe the practical engineering-oriented systems with precise mathematical model. The existing Lyapunov stable 
theory based on accurate differential equation with finite dimensions regards this system uncertainty as tiny disturbance 
at initial conditions of the differential equation. It uses the stability of standard system to ensure that the actual system 
responds stably to the initial conditions caused by those uncertainties. But this method differs greatly from the instance in 
real engineering. What is more, it is incapable to quantitatively grasp the impact on the performance of system caused by 
uncertainties. Fortunately H-infinity control theory offers feasible techniques to treat with these uncertainties. As for 
LAMOST drive control system, there is also two kinds of uncertainties: wind disturbance belongs to outer uncertainty 
and friction torque is inner uncertainty.  

ａ model uncertainty 

The alterable load torque (main of it is friction torque) and other nonlinear affects could be considered as system 
uncertainty. Thus, the transfer function 0 ( )P s  of standard system along with the bound ( )r s  of unknown error 
function ( )P s∆  describes the real mount drive system. There are several structures of model uncertainty. Both standard 

system model and bound function of uncertainty are needed no matter what structure is selected. In this paper, 
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multiplicative uncertainty model is chosen. Figure 6 shows multiplicative uncertainty model: 

0( ) [1 ( ) ( )] ( ), ( ) 1P s P s W s P s P s
∞

= + ∆ ∆ <                              (12) 

 where ( )W s  denotes bound function of uncertainty model ( )P s∆ .  

 
 
 
 
 
 
 
 

ｂ disturbance rejection  

With regard to SISO system, the H∞  norm of transfer function ( )P s could be described by: 

           sup ( )P P j
ω

ω
∞
=                                           (13) 

Above function could be explained as the maximum amplitude caused by unit impulse response. Once the frequency 
response of disturbance is determined, system output ( )tθ  then could be expressed as transfer function ( ) ( )P s W s  

responding to unit impulse. In order to reject disturbance response, it needs (14) to come into existence with regard to a 
certain positive numerical value γ .     

ˆ( ) ( ) ( )s P s W sθ γ
∞∞

≤ <                                       (14) 

Note that ( )W s  is a penalty function. It in fact is the model of disturbance in problems such as disturbance rejection. 

The upper bound of disturbance may be taken as penalty function as long as it could be estimated when the frequency 
characteristics of disturbance are ambiguous. In fact, as shown in figure 7, if the disturbance satisfies the following 
condition: 

ˆ( ) ( ) ,d j W j Rω ω ω≤ ∀ ∈                                         (15) 
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the maximum amplitude of output frequency response caused by disturbance will less than γ  as long as (14) holds. 

ｃ robust control theory   

From the two former parts of this section, both model uncertainty and disturbance rejection can be transformed into 
determining penalty function. So the next question is how to deal with these penalty functions as far as control is 
concerned? To begin this, the stable theory is indispensable. First, we would like to introduce the famous small gain 
theorem with regard to the system shown in figure 8, where ( )M s  is the already known system, ( )s∆ denotes 
unknown oscillating. Both ( )M s  and ( )s∆  are the analytic rational function in the closed right s-plane. 

Theorem: Assuming that the uncertain oscillating is bound and satisfied with ( ) 1s
∞

∆ ≤ , the sufficient and necessary 

condition of robust stable system is ( ) 1M s
∞
< . 

 
 
 
 
 
 
 
 
 
Both the closed loop system of model uncertainty and disturbance rejection should be standardized like the form shown 
in figure 8 according to small gain theorem. Through loop shaping, as for model uncertainty, the closed-loop system 

( )M s  could be shaped as ( ) ( ) ( ) [1 ( ) ( )]W S P s C s P s C s+ , where ( )P s  and ( )C s  equal to P  and C  in figure 3 

respectively. So the robust stable condition can be described by: 

( ) ( ) ( ) 1
1 ( ) ( )
W s P s C s

P s C s ∞

≤
+

                                        (16) 

As far as disturbance rejection is concerned, the robust stable condition then can be expressed as: 

( ) 1
1 ( ) ( )
W s
P s C s ∞

≤
+

                                         (17) 

There is only one unknown variable ( )C s  in formulas (16) and (17). So they are solvable in theory. At present, the two 
main approaches to get the controller ( )C s  are Riccati Equations and Linear Matrix Inequalities (LMI). The approach 
based on Riccati equations transforms existing conditions for an H ∞  controller into two Riccati equations and a spectral 
radius condition, and the set of all H ∞  controllers is parameterized using the unique stabilizing solutions to the Riccati 
equations with free parameter Q, a real-rational transfer matrix with an H ∞  norm less than a specified number. LMI 
changes existing conditions into three linear matrix inequalities. The set of all H ∞  controllers is parameterized using 
positive definite solutions to the linear matrix inequalities, which form a convex set. There will be a set of H ∞  
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Fig.8 Block diagram of small gain theorem 
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controllers corresponding to the positive definite matrices. A state space formula parameterizing all such controllers is 
obtained, where essential free parameters are constant matrices of fixed dimensions with a norm bound and a real 
number γ  within a known interval.  

ｄ problem synthesis 

The inner uncertainty (friction torque) and the outer uncertainty (wind disturbance) can be formed into a general 
feedback control system as shown in figure 6. Where, penalty signals 2w  and 2z  are used to guarantee the robustness 
of multiplicative oscillation, 1z  is the penalty signal of control input u , 1w  and 1z  is the penalty signals of wind 
disturbance response; 3W  describes the magnitude of multiplicative oscillation, 4W  represents the dynamic properties 
of wind disturbance, 2W  usually is chosen as a constant used to adjust the rate of response, 1W  is the penalty function 

used to modulate the magnitude of input signal. The , 1, 2,3, 4iW i =  is finally given by: 
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The H ∞  synthesis problem consists of minimizing the eigenvalue of the generalized matrix of transfer function from 

inputs u and , 1, 2iw i =  to outputs mθ  and , 1, 2,3iz i = . 

 
 
 
 
 
 
 
 
 
 

ｅ simulation results 

Figure 10 shows the 10th order H ∞  controller solved by MATLAB7.0. Further taking the wind oscillation as random 

noise, the azimuth and altitude tracking with velocity of 1 arcsec/s are shown in figure 11 and 12. The position errors of 
H ∞  controller with tracking speed 1arcsec/s are shown in figure 13and 14. From figure 13 and 14, the position errors 

have been obviously improved. 
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Fig.9 General control system of Alt-Az mounting 
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6. CONCLUSION 
This paper has presented a design methodology for a high-accuracy motion control system with H ∞  controller in the 

presence of wind disturbance and friction oscillation. Servo controllers based on conventional feedback controller like 
PID controller are not effective for compensation of above mentioned two kinds of uncertainties. In order to minimize 
wind disturbance and friction oscillation, robust H ∞  controller was designed in this paper. The simulation results show 

that this technique can be better to meet the challenge presented to the servo control of LAMOST main axes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig .10 H ∞  controller 
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Fig.11 Azimuth tracking with H ∞  controller 
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Fig.12 Altitude tracking with H ∞  controller 

Fig.13 Position error curve of Azimuth (1arcsec/s) 
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Fig.14 Position error curve of Altitude(1arcsec/s) 
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