
Application of real time database to LAMOST control system

Lingzhe Xu 1, Xinqi Xu

National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology,
Chinese Academy of Sciences

188 Bancang Street, Nanjing 210042, P.R.China

ABSTRACT

The QNX based real time database is one of main features for Large sky Area Multi-Object fiber Spectroscopic
Telescope’s (LAMOST) control system, which serves as a storage and platform for data flow, recording and updating
timely various status of moving components in the telescope structure as well as environmental parameters around it.
The database joins harmonically in the administration of the Telescope Control System (TCS). The paper presents
methodology and technique tips in designing the EMPRESS database GUI software package, such as the dynamic
creation of control widgets, dynamic query and share memory. The seamless connection between EMPRESS and the
graphical development tool of QNX’s Photon Application Builder (PhAB) has been realized, and so have the Windows
look and feel yet under Unix-like operating system. In particular, the real time feature of the database is analyzed that
satisfies the needs of the control system.

Keywords: Astronomical telescope real time, database, GUI, dynamic query, share memory, LAMOST

1. INTRODUCTION

LAMOST is one of a few large scientific and engineering projects in the national Ninth Five-Year Plan in China. When
the project is completed the telescope will boast its most wide field of view and most efficient spectroscopic observation
in all the astronomical optics telescopes of 4-meter-class and above in the world

The TCS of LAMOST has adopted QNX OS as its high level software development platform. QNX is one of a few
excellent and highly regarded real time OSs in the world. The Real Time Database (RTD) was further developed on the
platform with EMPRESS tool provided by QSSL, a Canadian software company. The application of RTD to LAMOST
conformed to the tendency for contemporary astronomical telescopes in the world, yet was a real debut for astronomical
telescopes ever built in China.

During the R&D stage of RTD we encountered problems with EMPRESS because it did not facilitate a GUI, although
PhAB, one of the QNX’s user tools, did provide a GUI yet lacking enough functions. On the other hand, an indisputable
trend was that because of the Windows’s domination people were getting used with Window’s look and feel environment.
Moreover, most users of our RTD will be astronomers, who are primarily interested in statistical reports with data and
graphs while less skilful in manipulating data in non-GUI environment. Therefore, we determined to develop RTD with
Window’s look and feel, particularly the functions of dynamic table and graph creation, to give the user a friendlier
interface.

Another distinguishing feature of RTD is its real time nature, which is required for the online quality analysis, historic
recording of various kinds of the telescope’s status, instruments’ diagnosis, meteorological conditions and station
environment monitoring, etc. These are all means of enhancing the telescope’s service rating and gaining scientific
output. We incorporated these time dependent factors into the consideration of RTD design.

1 Correspondence: Email: xqxu@nairc.ac.cn; Telephone & Fax: 86 25 8540 5562

Advanced Software, Control, and Communication Systems for Astronomy,
edited by Hilton Lewis, Gianni Raffi, Proceedings of SPIE Vol. 5496
(SPIE, Bellingham, WA, 2004) · 0277-786X/04/$15 · doi: 10.1117/12.550999

411

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

Painstaking effort led to a successful development of the package that contained 13000 lines of C listings. The package
was demonstrated in the institute and received positive response.

2. SYSTEM PLATFORM

The system platform has temporarily been built with a four-PC LAN, one of which is COMPAQ AP500 and the other
three are NEC PIII500. All the PCs are set up with QNX4.25 OS, and the EMPRESS v8.60 trial version is installed on
one of the NECs as the database server. This configuration is just for our lab test. Since the network is hierarchical and
extensible it is easy to hook up more PCs for LAMOST reality.

QNX as a distributed real time OS is the forerunner of the microkernel, which consists of a small kernel in charge of a
group of cooperation processes. QNX OS is ideal for real time applications. It provides multitasking, priority-driven
preemptive scheduling, and fast context switching, all essential ingredients of a real time system. When QNX is used to
serve a distribute application, it uses its built-in fleet protocol so as to make the network resources transparent from any
node-user’s perspective.

EMPRESS database is one of the few databases that can support QNX4.25. EMPRESS v8.60 supports the standard
distributed relation database, using fleet protocol under QNX and working with ODBC. The RTD for LAMOST was
developed under QNX OS with EMPRESS DBMS.

3. USER INTERFACE STYLE

The design realized the Windows’ style under QNX OS. Such as mouse manipulation, menu operation, table dragging,
multi-resolution selection, hot key and automatic creation of statistic graphs, etc. All these database operation
conveniences with Windows’ feel and look are realized in RTD by means a large number of C codes running in the
background, which cost painstaking effort to develop and debug.

4. DATABASE PLATFORM ARCHITECTURE

Since the EMPRESS has no GUI tools and the PhAB is not able to use the functions of EMPRESS we adopted the
database platform architecture as shown in figure 1, which makes a smooth connection between the EMPRESS and

Figure 1 Architecture of the database platform

Interface 1 Interface 3

Share m emory

Emp ress DB

Serv er p rocess

Share m emory

Serv er p rocess

Interface 2 Interface 4

412 Proc. of SPIE Vol. 5496

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

PhAB. The interface process was developed under PhAB using Watcom C code, and the server process was developed
under QNX shell using Watcom C too. They communicate through the share memory. For example, the interface process
accepts a read command input by the user, and then sends a message to the server process. The server process operates
the database accordingly and writes a data to the share memory. Finally the interface process reads the data from the
share memory. Thus the read cycle is completed.

It is worthy of mention that parallel channels exist, meaning a servo process running on each distributed node and with a
share memory each between the server process and its corresponding interfaces. Thus the parallel feature makes it
possible for simultaneous data read or write depending on the requirements of the input commands. Besides, figure 1
also shows that a server process can provide services for several interface processes at the same node.

5. FUNCTION OF THE APPLICATION PROGRAMMING

The main functions of the application are Create Table, Alter Table, Drop Table, Create Index, Drop Index, Execute SQL,
Create Form with Column Selected, Adjust Form Column, Adjust Form Font, Adjust Form Color, Adjust Form Size,
Adjust Form Width, Choose Query Condition, Choose Query Sequence, Create Graph with Column Selected, Set Graph
X-Y Coordinates, Set Graph Title, Set Graph Size, Insert Data, Delete Data. These functions accommodate the user with
major application features of the DBMS. And the user is able to create customized forms and graphs by means of the
application GUI and to save them, as well as to conduct data analysis.

6. TECHNICAL REALIZATION

6.1 Database service process
The Database Service Process (DSP) gets a message from the interface process, and then interacts with the database. The
DSP processes the message and abstracts the SQL command form it. By analyzing the key words in the command the
DSP determines the type of SQL command. For executive type of SQL such as insert, delete, update, etc. the DSP is
implemented and directly returns the status to the interface process. On the other hand, if the SOL is a select type we
must adopt a dynamical SQL technology to realize the select request. The adoption of so called dynamical technology is
simply because that the number of columns and the types of columns are unknown before the query is conducted. The
dynamical SQL declares a data structure as bellow and reads/writes data from/to the database.

EXEC SQL BEGIN DECLARE SECTION;
 char sql_str[1024]; /* string to contain SQL statement */
 char dname[33][25]; /* for storing item names */

 int dtype[25]; /* for storing data type of items */
 int da_num; /* number of active descriptor areas */
 int area; /* descriptor item area */

 char *pstr; /* for getting string data */
 long vlong; /* for getting integer data */
 double vdouble; /* for getting float data */

 int i;
 typedef struct
 {
 long size;

 char data[1];
 } bulk;
 bulk *pbulk; /* for getting bulk data */

 short ctrl; /* control variable for null checking */
EXEC SQL END DECLARE SECTION;

Proc. of SPIE Vol. 5496 413

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

6.2 InterProcess Communication (IPC)
There are a number of different processes being involved in the communications, such as the communication between
the service process and interface process, the interaction between the service process and the share memory and the
interaction between interface process and share memory. In the development of the database application package we
employed both synchronous communication and asynchronous communication to complete the data transactions.

6.2.1 Message Passing
The communication between the interface process and the service process is carried out via messages using C language
functions, Send() and Receive(). In QNX, a message is packet of bytes that's synchronously transmitted from one process
to another. Figure 2 outlines a simple sequence of events in which two processes, Process A and Process B, use Send(),
Receive(),and Reply() to communicate with each other. Initially Process A sends a message to Process B by issuing a
Send() request to the Microkernel. At this point, Process A becomes SEND-blocked until Process B issues a Receive() to
receive the message. Then Process B issues a Receive() and receives Process A's waiting message .Process A changes to
a REPLY-blocked state. Since a message was waiting, Process B doesn't block. Finally Process B completes the
processing associated with the message it received from Process A and issues a Reply(). The reply message is copied to
Process A, which is made ready to run. A Reply() doesn't block, so Process B is also ready to run. Who runs depends on
the relative priorities of Process A and Process B.

6.2.2 Share Memory
The database server process gets the data from database via share memory. The share memory provides a fastest data
buffer for IPC. Once the share memory buffer is mapped onto the process-space the communication among
corresponding processes will no longer involve the kernel. However, it is vital to establish synchronization for one
process to write data to the buffer and another to read the data from the buffer. A number of such synchronization
techniques exist, for example, mutually exclusive lock, conditional variable, read-write lock, record lock, semaphore and
so on. We have adopted the semaphore in our programming. The server uses a semaphore to get the right to access the
share memory, then maps an address pointing to the share memory, and finally writes data to the address. This is done,
the server sets a semaphore to inform the client, and the client then gets data from the share memory.

Four main functions, Shm_open, Mmap, Sem_post and Sem_wait, are involved in the share memory operation. The
shm_open function designates a name argument to create a new share memory or to open an existing share memory. The
Mmap function maps the share memory to the calling-process address. The Sem_pos function and Sem_wait function are
used to control the semaphore. The Sem_post increases the semaphore and the Sem_wait decreases the semaphore.
When the semaphore is zero, the process, which gets the semaphore, will be blocked. In our practice, the share memory
is divided into N parts. Two semaphores are set, one is read-semaphore and the other is write-semaphore. The read-
semaphore is initialized 0, and the write-semaphore is initialized N. Each time the server writes a part of memory, write
= write –1 and read =read + 1, then the pointer points to the next part of memory. Each time the interface process reads a
part of memory, write = write +1 and read = read –1, then the pointer points to the next part of memory. When the n parts

send data transmitted
Time

Reply()

Receive()
Send()

Process A Process B

reply data transmitted

Figure 2 Communication between Process A & Process B via message

414 Proc. of SPIE Vol. 5496

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

of memory are written if write > 0 then the pointer points to the first part of memory. When the N parts of memory are
read if read > 0 then the pointer points to the first part of memory. When write = 0 the server process is blocked, and
when read = 0 the interface process is blocked. The semaphore implementation has realized the mutually exclusion on
the share memory operation, increased the throughput and eliminated memory overflow.

6.3 Interface programming

6.3.1 Dynamical control widget and combo control widget
The user interface was developed under PhAB environment. Because the PhAB lacked powerful graphic programming
tools, which made it difficult to develop a complicated GUI. Therefore we had to develop the application by using a
series of programming techniques. For the sake of programming flexibility and averting the restriction of the inefficient
PhAB’s graphic tools we used dynamical control widgets and further built them into sophisticated combo widgets. For
example, the dynamically created tables are made up of three control widgets Ptlist, PtDiider and PtButton. Every head
entry of the table column is PtButton control widget. The tables are created dynamically, which is a smart way to deal
with the un-prediction of grammatical generated user statement.

During the package development for a frequently called control widget the best way to implement was un-
doubtfully to utilized control-widget store, which provided the possibility of once-created and multi-called. The
call-back function could be preprogrammed and immediately become effective after the calling.

We used the function of ApCreateWidget to create widget by copying a widget from the PhAB widget database

Figure 3 shows the created report graph incorporating some dynamical widgets. The broken lines on the graph
demonstrate the guiding error in units of CCD pixels. The parameters that determine how the graph looks could be
dynamically created by user’s input preferences.

6.3.2 Dynamical control widget management
Having been created, the dynamical widget will require some system resource. On the other hand, when the template,
who has called the dynamical widget, is closed the program needs to destroy the dynamical widget to free the resource.

Figure 3 Guiding error is being generated by user’s input preferences

Proc. of SPIE Vol. 5496 415

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

We use the chain list to manage the dynamical control in our program. Chain list is a structure which can be distributed
dynamically without requiring continuous storage locations. That means the data can be stored in discrete locations. In
addition for inserting and deleting data in the chain list it is not necessary to move almost a half of all the data around as
in the case of the vector storage. In our programming the chain list was used in large scale. The structure below functions
to store one column for a report form.

struct ST_DESIGN{

PtWidget_t widget ;/*the handle of widget*/

Char item_name[NAMESIZE];/*the attrib of the table*/

 char text[NAMESIZE];/*the name of the attrib*/

 PhArea_t area;/*the size of the widget*/

 PgColor_t font_color;/*the color of the widget*/

PgColor_t fill_color;/*the fill color of the widget*/

 char font[NAMESIZE];/*the font of the widget*/

struct ST_DESIGN next;/*the point of the list*/

};

6.3.3 Storage of data structure
Having been designed, the user report form or graph needs to be saved. We use the stream file to save the form or graph.
The advantage of such a strategy is that it can save the data structure directly without the user’s conversion. We illustrate
the main functions involved in the programming below.

The fopen() function opens the file whose name is the string pointed to by filename, and associates a stream with it.

The fread() function reads nelem elements of elsize bytes each from the file specified by fp into the buffer specified by
buf.

The fwrite() function writes nelem elements of elsize bytes each to the file specified by fp.

The fclose() function closes the file fp.

7. DISCUSSION ON THE DATABASE REAL TIME PERFORMANCE

Modern large astronomical telescopes are often required to provide a means of online observational data quality analysis,
and LAMOST is no exception. Besides large number of control related data are involved in LAMOST control system’s
routine operation. Data sending, receiving, analyzing and processing go on all the time. These operations need to be
conducted real timely within a fraction of each servo cycle. The TCS of LAMOST incorporates a number of such cycles
to fulfill its observation mission, for example the mount servo cycle, field rotation servo cycle, guiding servo cycle and
active force correction cycle of the Schmidt mirror plate, etc. In particular the tracking process is conducted rigorously
based on the target passage that is extremely time-critical. We foresee that during the commissioning stage of the
telescope it will absolutely be necessary to diagnose the mount tracking behavior against the readings from both azimuth
and altitude encoders. All these call for a real time database to cope with.

To some extend, the real time performance of the database depends on the OS platform. In addition to the CPU’s cycle
frequency the interrupt latency, the scheduling priorities all contribute to the real time performance. The real time OS
differs from non-real time OS in dealing with time crucial tasks. With real time OS the user is able to opt for the priority
level for particular process so as to guarantee the spent time within the requirement. QNX OS platform serves this
purpose well. Its multitasking, priority-driven preemptive scheduling, and fast context switching as well as built-in fleet
protocol are all real time associated essentials. For processor of 166 MHz Pentium under QNX OS the interrupt latency
could reach 3.3 microseconds, let alone for future much more fast processors.

The package we developed inherited the real time essentiality plus some other measures stated below, thereby the
package fits real time requirement well.

416 Proc. of SPIE Vol. 5496

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

The architecture of database structure plays an important role in building a real time database. Thoughtful storage
arrangement of all these control related date is one of priorities. Bearing this in mind we put the tables most frequently
accessed along with its process on the same node so as to reduce the data traffic greatly. In terms of data access
efficiency it is naturally much better for local data than for remote data. In case of local date the access efficiency is
basically limited by the CPU’s frequency. For example, for LAMOST mount servo suppose to get the readings of
azimuth encoder and altitude encoder every 20ms so as to produce a record. Plus some other related information the
length of the record might reach 100 bytes. For examining our package to see if it could fulfill such a task within the
time tick we conducted the test to insert a series of records of 266 bytes length each, repeatedly for 1000, 3000 and 5000
times respectively, and record the whole time interval and get the average time spent for each record. The following two
tables show the test results in units of microseconds. The test was done on a Pentium 500 MHz with 512M memory and
a Pentium 233 MHz with 192M memory respectively.

Pentium 500 MHz
with 512M memory

Average time spent on inserting each record of 266 bytes in units of
microseconds

Insert a series of

records of 266

bytes length each

for 1000 times

12139 12129 12129 12149 12139 12129 12109 12129 12119 12119

Insert a series of

records of 266

bytes length each

for 3000 times

12125 12115 12122 12115 12122 12115 12119 12115 12125 12112

Insert a series of

records of 266

bytes length each

for 5000 times

12117 12119 12127 12119 12119 12119 12121 12127 12119 12125

Pentium 233 MHz
with 192M memory

Average time spent on inserting each record of 266 bytes in units of
microseconds

Insert a series of

records of 266

bytes length each

for 1000 times

18158 18178 18148 18158 18258 18118 18138 18128 18128 18108

Insert a series of

records of 266

bytes length each

for 3000 times

18122 18178 18122 18108 18098 18118 18122 18125 18118 18118

Insert a series of

records of 266

bytes length each

for 5000 times

18152 18152 18150 18146 18152 18150 18156 18160 18140 18216

From the above two tables it is noted that the CPU’s cycle frequency has an impact on the inserting time. Yet even with
the slower PC of Pentium 233 MHz with memory of 192M the average time around 18ms spent on inserting each record
of 266 bytes still meets the requirement, let alone for future PC with higher cycle frequency.

Proc. of SPIE Vol. 5496 417

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

8. THE CONCLUSION

The research work passed a critical review among the experts from Beijing, Nanjing and Hefei at the evaluation meeting
on July 2, 2002 organized by the LAMOST Engineering Headquarters. A number of advanced techniques have been
adopted in the design such as dynamic creation of control widgets, dynamic query and share memory. What is more, the
package provides the user with a friendly and powerful function of dynamic creation of database tables. Last but not
least the real time performance of the RTD proved satisfactory for LAMOST specification.

REFERENCES

1. Xinqi Xu, “Control system and technical requirements - preliminary design”, LAMOST Technical Report, 1998.

2. Xinqi Xu, “Preliminary Exploration of QNX Real Time OS Based Application to Large Astronomical Telescopes”,
Astronomical Instruments and Technology, 1999.

3. Xinqi Xu, “The Control System of LAMOST Telescope”, ACTA ASTROPHYSICA SINICA, Vol. 20 Supplement, ,
P.43-52, 2000.

4. Lingzhe Xu, Xinqi Xu, “Outlook of Distributed Database Application to LAMOST Control System”, LAMOST
Internal Technical Report, 2001.

5. Xinqi Xu, Jun Zhou, Lingzhe Xu, “Software simulation of the LAMOST control system”, SPIE Volume 4757,
P.145-153, 2002.

6. Xinqi Xu, Lingzhe Xu, Gangping Jin, “Overview of LAMOST control system”, SPIE Volume 4837, 2002.

418 Proc. of SPIE Vol. 5496

Downloaded from SPIE Digital Library on 22 Aug 2010 to 159.226.100.201. Terms of Use: http://spiedl.org/terms

