Vol. 33 No. 4 April 2004

基于最小二乘法准则的光学综合 孔径观测目标傅里叶信息提取

范伟军 周必方² 夏良正 王海 2

(1 东南大学自动控制系,南京 210096) (2 中国科学院国家天文台 南京天文光学技术研究所,南京 210042)

摘 要 提出了基于最小二乘法准则提取光学综合孔径观测目标的傅里叶信息,给出了系统的理 论推导过程,与其它传统条纹信息提取方法作了比较,指出基于最小二乘法准则提取观测目标信 息周期短 ,速度快 ,可提取观测目标的傅里叶幅度和相位 . 实验仿真表明 ,基于最小二乘法准则提 取观测目标信息是可行的.

关键词 光学综合孔径:最小二乘法:傅里叶幅度:相位 中图分类号 O436.1 文献标识码 Α

0 引言

光学综合孔径(OAS)技术可以大大提高观测分 辦率^[1,2]. 自 H. Fizeau 于 1868 年首先提出恒星光干 涉技术以来,光干涉技术在天体目标观测中的应用 得到了长足的发展 . 1921 年至 1931 年 A. A. Michelson 和他的学生 F. G. Pease 首次测定了太阳 以外角直径为0.02 - 0.04 范围内的6颗恒星. 1985年J.E.Baldwin 等首先提出了光学波段的闭合 测量,并于 1995 年完成了 COAST 光学综合孔径望 远镜阵并成功地进行了观测和图像重构^[3]. 鉴于国 外光干涉观测技术的飞速发展,我国科研人员于90 年代初对恒星光干涉技术开始研制,并于 1996 年在 研制成功的恒星光干涉仪样机上得到了人造光源的 干涉条纹.2002年我国科研人员对地基光学综合孔 径成像技术开始研究.相比于利用恒星光干涉技术 测量天体目标的角直径,光学综合孔径成像技术的 最终目标是要从干涉条纹提取目标傅里叶信息,从 而重构目标像.本文从干涉条纹的数学模型出发, 着重对光学综合孔径成像技术中的目标傅里叶信息 提取技术进行了研究,提出了基于最小二乘法准则 的信息提取,相比于传统的信息提取方法,如:大气 扰动调制法^[4]、相位调制法^[4,5]、傅里叶变换法^[6] 等,该方法速度较快,可同时提取目标傅里叶幅度、 相位信息.

信息提取方法简介 1

光学综合孔径像面干涉示意图如图1所示,从

*国家 863 基金资助项目 Tel :025- 5282601 Email : fwjzqchfwj @sina.com 收稿日期:2003-05-07

Fig. 1 The image-plane beam combiner

望远镜采集的两束光经光程补偿及平行性补偿 后在像面相干形成干涉条纹,干涉条纹中包含了目 标的傅里叶信息,即目标像重构的信息.设从 s1 到 s5 的光程为 d15,从 s2 到 s6 的光程为 d26, s3 的坐标 为 $(x_3, y_3), s_4$ 的坐标为 $(x_4, y_4),$ 为入射准单色光 的中心波长,f为光束组合器 h的焦距.在像面上 放置一阵列 CCD.那么 CCD 采集到的条纹图像为

 $I_0(x, y) = 2 I_1(x, y) (1 + |r_{12}(0)| \cos(0 +$

$$2 (u_0 x + v_0 y))$$
 (1)

式中, $I_1(x, y)$ 为望远镜 s_1 或 s_2 在像面产生的光强 分布,| r₁₂(0)|为目标傅里叶幅度, 0</sub>包含目标的傅 里叶相位 $_{12}(0)$, $_0 = _{12}(0) + 2 (d_{15} - d_{26})/$, u_0 $= (x_4 - x_3)/(f), v_0 = (y_4 - y_3)/(f).$

本文中目标傅里叶信息的提取是指从条纹图像 中提取目标傅里叶幅度| r₁₂(0)| 和条纹相位 0. 下 面着重介绍相位调制法、傅里叶变换法.

相位调制法通常采用四分波长线性连续波形调 制,利用压电驱动器调节来自两路光的光程差,使之 增加一个额外的相位 . 在一个调制周期 2 内,四 等分周期采集条纹图像,从采集的四幅条纹图像提 取目标信息.傅里叶变换法是利用干涉条纹的频谱 特性 从条纹图像的频谱中分离出包含目标信息的 频谱部分,再从中提取目标信息.相位调制法一般 至少需要四幅条纹图像,因此提取信息的周期长,且 相位的提取依赖于多幅图像去除零均值随机噪声的 干扰,故不宜用于光学综合孔径干涉阵观测高速运 行的天体目标的信息提取;傅里叶变换法一般用于 相位的提取,幅度提取很少涉及.

4期

2 基于最小二乘法准则的信息提取

先采集单一望远镜在像面产生的爱里斑图像,设 , *ī* 为 *I*₁(*x*, *y*),不妨设 *x*, *y* 的取值范围为1到 *m*,则有

$$I_{1}(x, y) = I_{1}(x, y) + n_{1}(x, y)$$

(x, y = 1, ..., m) (2)

式中 $n_1(x, y)$ 为加在爱里斑图像上的噪声分布.再 采集两望远镜在像面产生的干涉条纹图像设为 \tilde{I}_0 ,则 有

$$I_0(x, y) = I_0(x, y) + n_0(x, y)$$

$$(x, y = 1, ..., m)$$
(3)

式中 $n_0(x, y)$ 为加在干涉条纹图像上的噪声分布. 根据式(1)、(2)、(3),有

$$\begin{bmatrix} I_0(x, y) \end{bmatrix} / \begin{bmatrix} 2I_1(x, y) \end{bmatrix} = \begin{bmatrix} 2I_1(x, y) (1 + |r_{12}| \cdot x_{10}) \\ \cos(u - u_0 x + v_0 y) + n_0(x, y) \end{bmatrix} / \begin{bmatrix} 2I_1(x, y) + y_0 y \end{bmatrix} + \begin{bmatrix} 2n_1(x, y) \end{bmatrix} = 1 + |r_{12}| \cos(u - u_0 x + v_0 y) + \begin{bmatrix} n_0(x, y) - 2n_1(x, y) (1 + |r_{12}| \cos(u - y) + y_0 + y_0) \end{bmatrix} + \begin{bmatrix} n_0(x, y) - 2n_1(x, y) (1 + |r_{12}| \cos(u - y) + y_0 + y_0) \end{bmatrix} = 1 + \begin{bmatrix} n_0(x, y) + n_1(x, y) + n_1(x, y) \end{bmatrix}$$

$$\tilde{I}(x, y) = \frac{\tilde{I}_0(x, y)}{2\tilde{I}_1(x, y)} - 1, f(x, y) = | r_{12}| \cos (-0 + u_0 x + v_0 y) N_{01}(x, y) = [n_0(x, y) - 2n_1(x, y)(1 + |r_{12}|)]$$

 $\cos (_0 + u_0 x + v_0 y))]/]2(I_1(x, y) + n_1(x, y))]$ 则有

 $I(x, y) = f(x, y) + N_{01}(x, y)$ (4) 显然,在爱里斑内,光强度大,信噪比高, $N_{01}(x, y)$ 相 对于 f(x, y)来说,影响比较小.取爱里斑内第 *i* 行 象素值集 I(i, y), y 的取值范围为 $y = y_{ip}, y_{ip} + 1,$..., y_{iq} ,在爱里斑内,不妨令 $i = a_s, a_s + 1, ..., a_t$. 那么有

 $I(x, y) = |r_{12}| \cos (iu_0 + v_0 y) \cos _0 - |r_{12}| \cdot$ sin (iu_0 + v_0 y) sin __0 + N_{01}(i, y), y = y_{ip}, y_{ip} + 1, ..., y_{iq}

今

 $I = [I(i, y_{ip}, I(i, y_{ip} + 1), ..., I(i, y_{iq})]^{T}$ $D = [|r_{12}| \cos_{0}, |r_{12}| \sin_{0}]^{T}$

$$C = \begin{bmatrix} \cos (iu_0 + v_0 y_{ip}) & -\sin (iu_0 + v_0 y_{ip}) \\ \cos (iu_0 + v_0 (y_{ip} + 1)) & -\sin (iu_0 + v_0 (y_{ip} + 1)) \\ \dots & \dots & \dots \\ \cos (iu_0 + v_0 (y_{iq})) & -\sin (iu_0 + v_0 (y_{iq})) \end{bmatrix}$$
$$N = [N_{01}(i, y_{ip}), N_{01}(i, y_{ip} + 1), \dots, N_{01}(i, y_{iq})]^T$$
$$\square$$

$$I = CD + N \tag{5}$$

即

$$N = CD - I \tag{6}$$

可以根据这样的最优准则,即寻找目标傅里叶信息 | $\hat{r}_{12}(i)$ |、 $\hat{o}(i)$,使 *CD* 和 \tilde{I} 的偏差符合最小二乘法 准则,即找到一个 \hat{D} ,使

$$N^{2} = C\dot{D} - I^{2}$$
(7)

为最小,式中 $N^2 = N^T N$, $\hat{CD} - I^2 = \hat{CD}$ -

 $I \xrightarrow{T} C\hat{D} - I$ 分别为N和 $C\hat{D} - I$ 的范数的平方. 将式(7)看作准则函数,令

$$J(\hat{D}) = C\hat{D} - I^{2}$$
 (8)
要使上式最小,将 $J(\hat{D})$ 对 \hat{D} 求偏导,并使结果为 0,
则有^[7]

$$\hat{D} = (C^T C)^{-1} C^T \tilde{I}$$
(9)

Ŷ

$$\hat{D} = (d_1, d_2)^T$$

则此时可以从第 *i* 行象素集中得到目标傅里叶信息 最小二乘法最优估计

$$|\hat{r}_{12}(i)| = (d_1^2 + d_2^2)^{1/2}$$
 (10)

$$f_0(i) = \cos^{-1}(d_1 / \sqrt{d_1^2 + d_2^2})$$
 g

$$\sin^{-1}(d_2/\sqrt{d_1^2+d_2^2}) \tag{11}$$

取从爱里斑内所有行象素集中所得到的目标傅里叶 信息的平均值作为最终的目标傅里叶信息,即

$$| r_{12} | = \frac{1}{a^{t} - a_{s} + 1} \sum_{i=a_{s}}^{a_{i}} | \hat{r}_{12}(i)$$
$$0 = \frac{1}{a_{t} - a_{s} + 1} \sum_{i=a_{s}}^{a_{t}} \hat{r}_{0}(i)$$

3 仿真实验

为了验证基于最小二乘法准则进行目标信息提取的有效性,选用一"干净"的干涉条纹图像用加噪的方式进行计算机仿真试验.图2为"干净"的图像,图像中所包含的目标傅里叶幅度、相位值分别为0.9532和-0.0702.

现在"干净"图像中分别加入均值为0、方差分 别为0.004和0.02的高斯随机噪声,用相位调制

473

法、傅里叶变换法及基于最小二乘法准则从加噪图 像提取信息.

图 2 无噪条纹图像 Fig. 2 Fringe without noise

图3为用傅里叶变换法和基于最小二乘法准 则,从加入方差为 0.004 高斯随机噪声的加噪图像 中提取的相位值的分布,共进行仿真试验25次,横 坐标为仿真实验次数,纵坐标为相位值,其中矩形小 块为用基于最小二乘法准则提取的相位值,三角形 小块为用傅里叶变换法提取的相位值.图4为用相 位调制法和基于最小二乘法准则,从加入方差为 0.004 高斯随机噪声的加噪图像中提取的目标傅里 叶幅度值的分布,横坐标为实验次数,纵坐标为傅里 叶幅度值,其中矩形小块为用基于最小二乘法准则 提取的幅度值,三角形小块为用相位调制法提取的 幅度值. 从图 3、4 可以看出,基于最小二乘法准则 多次提取目标傅里叶信息数据分布比较集中,提取 的相位值主要集中在真实相位 - 0.0702 附近,提取 的幅度值主要集中在真实幅度值 0.9532 附近,效果 与用其它两种传统方法分别提取目标傅里叶幅度和 相位差不多.表1、表2给出了多次从加了高斯随机 噪声的图像中提取目标信息的均值和均方误差,从 统计数据看,基于最小二乘法准则提取目标的傅里 叶幅度、相位均值精度与用相位调制法提取目标的 傅里叶幅度和用傅里叶变换法提取相位的均值精度 差不多 ,重复性略差 . 但基于最小二乘法准则从条 纹图像中提取目标信息时只需要一幅条纹图像,因 此基于最小二乘法准则提取条纹信息仍不失为一种 快速高精度的好方法。光学综合孔径干涉阵快速观 测高速运行的天体目标时,可用该方法同时实现对 目标傅里叶幅度和相位的快速提取.

	傅里叶变换法		最小二乘法准则	
噪声方差	0.004	0.02	0.004	0.02
Mean	- 0.0699	- 0.0696	- 0.06986	- 0.071
NMSE	0.00037	0.00197	0.00065	0.0032
表 2 傅里叶幅度提取的数据统计				
	相位调制法		最小二乘法准则	
噪声方差	0.004	0.02	0.004	0.02
Mean	0.9545	0.959	0.9551	0.96072
NMSE	3.3E-06	4.4E-05	1.1E-05	5.6E-05

4 结论

基于最小二乘法准则提取目标信息,相比于相 位调制法、傅里叶变换法对目标信息的提取,使用该 方法能同时提取目标傅里叶幅度、相位,且抗噪能力 较强;该方法运行时间短,相比于其它信息提取方 法,有一定的速度优势.从仿真实验数据看,基于最 小二乘法准则提取目标傅里叶信息提取是行之有 效的.

参考文献

- 王海涛,周必方.光学综合孔径望远镜阵的光束组合器. 光学学报,2002,22(9):1109~1115
 Wang H T, Zhou B F. Acta Optica Sinica, 2002,22(9):1109~1115
- 2 王海涛,周必方.光学综合孔径干涉成像技术.光学精密 工程,2002,10(5):434~442

Wang H T, Zhou B F. Optics and Precision Engineering, 2002, $10(5):434 \sim 442$

- 3 Baldwin J E, beckett M G, Boysen R C, et al. The first images from an optical aperture synthesis array :mapping of Capella with COAST at two epochs. A &A ,36:13~16
- 4 王正明.天文光干涉测量.北京:科学出版社,1996.165~ 173

Wang Z M. Astronomy interferometry. Beijing: Science Press , 1996. 165 \sim 173

- 5 Kadono H, Takai N. New common-path phase shifting interferometry using a polarization technique. App Opt, 1987, 26:898~901
- 6 Takenda M, Ina H, Kobayashi S. Fourier transform method of fringe-pattern analysis for computer based topography and interferometry. J Opt Soc Am, 1982, 72:156 ~ 160

7 Qian Kemao , Wu Xiaoping. Modulation analysis based weighted least-squares approach for phase unwrapping. *Acta Photonica*

Sinica ,2001 ,30(5) :585 ~ 588

Extracting Optical Aperture Synthesis Observation Objective Fourier Information Based on Least-squares Approach

Fan Weijun¹, Zhou Bifang², Xia Liangzhen¹, Wang haitao²

1 Department of Automatic Control, Southeast University, Nanjing 210096

2 Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories of Chinese

Academy of Sciences, Nanjing 210042

Received date :2003 05 07

Abstract A method extracting optical aperture synthesis observation objective Fourier information based on least-squares is proposed. The theory is deduced. Compared with the other traditional methods, extracting interferogram fringes information based on least-square requires much less time, and can extract observation objective Fourier modulus and phase together. Finally, a simulation about extracting interferogram fringes information is executed.

Keywords Optical aperture synthesis ;Least-squares ; Fourier modulus ; Phase

Fan Weijun was born in 1973. He received M. S. degree in astronomy instrument and method from Chinese Academy of Sciences in 1998. Now he is a doctor student in pattern recognition & intelligence system in Southeast University. His research work focuses on OAS image technology.